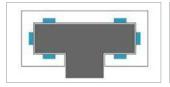

## PRODUCT INFORMATION

### **HYDROSTATICS**

- No solid friction
- Permits highly precise infeeds
- No stick-slip effect
- Wear-free
- · Extremely good dampening
- · High axis rigidity

### **LINEAR DIRECT DRIVE**

- No material contact
- Wear-free
- No elasticity in the drive train
- Very well adjustable
- · Extremely high positioning quality
- Permits highly precise infeeds
- High dynamics low inertia




| CHARACTERISTIC VALUE                    | AREA OF USE/SIZE                  |
|-----------------------------------------|-----------------------------------|
| Length of axis                          | 1200 mm                           |
| Width of axis                           | 700 mm (620 mm)                   |
| Retraction of sleeve                    | 450 mm                            |
| Feed                                    | 0.0005 - 20000 mm/min             |
| Max. acceleration rapid traverse 2 m/s2 | 2 m/s2                            |
| Max. acceleration oscillation           | 3 m/s2                            |
| Max. double-retraction frequency        | 10 Hz (retraction of sleeve 1 mm) |
| Axis resolution                         | 0.0000025 mm (2.5 nm)             |
| Positioning error                       | <0.002 mm                         |
| Repeat accuracy                         | <0.001 mm                         |

# **CONSTRUCTION**

### **ENCOMPASSING GUIDE (HYDROSTATIC)**

- Encompassing shape for best rigidity
- · Carriage is optimally guided





### INTEGRATION OF LINEAR DIRECT DRIVE

- Installed on guide level under the carriage
- · Optimal position to the axis center of gravity
- · Supports hydrostatics by additional pre-tensioning

### **COOLING CONCEPT**

- Influences from hydrostatics and the linear drive were entirely eliminated
- Three-level cooling of the linear drive
- Efficient cooling of the hydrostatic oil
- Liquid cooling media (water-glycol and hydrostatic oil) flow through the structural parts
- · Optimized cooling duct geometry for best heat transfer
- Cooling media are temperature-controlled to <0.2 °C</li>
- Efficient active cooling unit energetically optimized

# **APPLICATIONS**

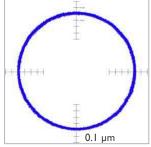
- Optimized combination HYDROLIN® & active cooling unit
- · Where highest precision and contour compliance is required
- > Profile / eccentricity / conical grinding
- · Where robustness and high availability are required
- Where consistently high quality across the life cycle is required
- Quick oscillations improve bore accuracy
- · Where short auxiliary process times are required



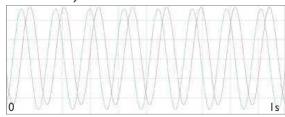
Kellenberger Switzerland AG
Thannäckerstrasse 22
9403 Goldach, Schweiz
info@kellenberger.net

Follow Us:





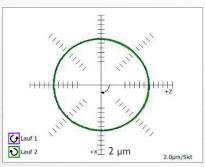




# **PERFORMANCE**

### THEORETICAL CIRCULARITY **TEST**

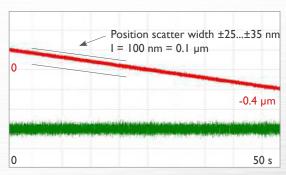
X-Z-scale values, radius 50 feed 200, scale 0.1 µm




### SHORT RETRACTION OSCILLATION (HIGH **DYNAMICS**)



Plot shows 8 retractions per second across 1 mm (load 220 kg) Red line: Path (as absolute position) Green line: Speed (±25 mm/s)


#### **BIDIRECTIONAL** CIRCULARITY DEVIATION Value TEST PARAMETERS Radius 50 mm Feed 200 mm/min Measuring IUS GUS sequence Test level ZX X axis Software Center End position rear-10 mm adjustment Software 90° End position

## PRACTICAL CIRCULARITY TEST (DOUBLE BALL BAR)



20% out-of-squareness/20% rel. measuring error/20% straightness error X and Z. High dynamics - low inertia

### SLOW INFEED (0.5 µm/min)



Red line: Path 0... -0.4 µm in 50 seconds Green line: Speed (0.5 µm/min)



