

HYDROLIN HIGH-DYNAMICS HYDROSTATIC LINEAR AXES

PRODUCT INFORMATION

HYDROSTATICS

- No solid friction
- Permits highly precise infeeds
- No stick-slip effect
- Wear-free
- Extremely good dampening
- High axis rigidity

LINEAR DIRECT DRIVE

- No material contact
- Wear-free
- No elasticity in the drive train
- Very well adjustable
- · Extremely high positioning quality
- Permits highly precise infeeds
- High dynamics low inertia

CONSTRUCTION

and the

ENCOMPASSING GUIDE (HYDROSTATIC)

- Encompassing shape for best rigidity
- Carriage is optimally guided

INTEGRATION OF LINEAR DIRECT DRIVE

- Installed on guide level under the carriage
- Optimal position to the axis center of gravity
- Supports hydrostatics by additional pre-tensioning

COOLING CONCEPT

- Influences from hydrostatics and the linear drive were entirely eliminated
- Three-level cooling of the linear drive
- Efficient cooling of the hydrostatic oil
- Liquid cooling media (water-glycol and hydrostatic oil) flow through the structural parts
- · Optimized cooling duct geometry for best heat transfer
- Cooling media are temperature-controlled to <0.2 °C
- Efficient active cooling unit energetically optimized

APPLICATIONS

- Optimized combination HYDROLIN® & active cooling unit
- Where highest precision and contour compliance is required
- > Profile / eccentricity / conical grinding
- Where robustness and high availability are required
- Where consistently high quality across the life cycle is required
- Quick oscillations improve bore accuracy
- · Where short auxiliary process times are required

HARDINGE KELLENBERGER.COM

Hardinge Kellenberger AG Thannäckerstrasse 22, 9403 Goldach info@kellenberger.net Follow Us:

in Hardinge Europe

O @hardinge_europe

HARDINGE

HYDRO HIGH-DYNAMICS Hydrostatic Linear Axes

THEORETICAL CIRCULARITY TEST X-Z-scale values, radius 50 feed 200, scale 0.1 µm

BIDIRECTIONAL CIRCULARITY DEVIATION					
Value	Ι.Ι μ				
TEST PARAMETERS					
Radius	50 mm				
Feed	200 mm/min				
Measuring se- quence	IUS GUS				
Test level	ZX				
Center	X axis Software End position rear-10 mm adjustment				
Software	90°				
End position	90°				

PRACTICAL CIRCULARITY TEST (DOUBLE BALL BAR)

20% out-of-squareness/20% rel. measuring error/20% straightness error X and Z. High dynamics - low inertia

HARDINGE KELLENBERGER.COM

SLOW INFEED (0.5 µm/min)

Green line: Speed (0.5 µm/min)

Hardinge Kellenberger AG Thannäckerstrasse 22, 9403 Goldach info@kellenberger.net

Follow Us: in Hardinge Europe

(O) @hardinge_europe

2

Plot shows 8 retractions per second across 1 mm (load 220 kg) Red line: Path (as absolute position) Green line: Speed (±25 mm/s)

M	AA	M	AV.	AA	NA	M	AA.
IAL	IAN	141	IAL	111	TAX	TAN	IAN
TAA.	1111	MI	IAN	MI	1711	TAT	TAN
711	MAX		Π		HI	IIII	ITA